阿波罗尼斯圆定理是在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB=λ,当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。
阿波罗尼斯圆一般指阿氏圆,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个以定村拉史极比m:n内分和外分定线段AB的两个分点的连线为直径的圆。这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
阿波罗尼斯圆定理是在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB=λ,当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。
阿波罗尼斯圆一般指阿氏圆,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个以定村拉史极比m:n内分和外分定线段AB的两个分点的连线为直径的圆。这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
扫一扫,手机浏览