证明四点共圆有下述一些基本方法:
方法1从被证共圆的四益使施军高再直陆婷剧点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.半响(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该360问答圆直径。)
方法3把被证共圆的四能点连成四边形,若能证明其对角互补或能证明除丰原慢风三问油其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)
方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中难航其半选择一种证法,给予证明.
判定与性质:
圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=180度,B+D=180度,
角ABC=角ADC(同弧所对的圆周角相等)。
角CBE=角D(外放克影肉培注卷行角等于内对角)
△ABP∽△DCP(三个内角对应相等)
AP*CP=BP*DP(相交弦定理)
四点共圆的图片EB*EA=EC*ED(割线定理)
EF*EF=EB*EA=EC*ED(切割线定理)
(切割线定理,割线定理,相交弦定理统称圆幕定谁理)
AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)