导数由速度问题和切线问题抽象出来的数学概念边张同剂气。又称变化率。如一辆来自汽车在10小时内走了600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。为了较好地反映汽车360问答在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t2)/t1-t2],当t1与煤t0很接近时,汽车行纪水分驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0到t1这段时间内的运动变化情况,自然就把极限[f(t1)-f(t2)/t1-t2]作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。一般地,假设一元函数y=f(x)在x0点的附近(x0-a,x0+a)内有定义,当自变量的增量Δx=省止品奏刑府件交附极x-x0→0时函数增量Δy=f(x)-f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。若函数f在区间I的每一点都可导,便得到一个以I为定义域的新函数印景举什盾染认清,记作f′,称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l在P0〔x0,f(x0)〕点的切线斜率。
导数是微积分中的重要概念。导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。