您的位置 首页 百科知识

世界上最难的数提学题是什么

世界上最难的数学题如下:

1、NP完全问题销。

例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。360问答宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,生乎景境药管征那友并且发现宴会的主人是正确息的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个就茶太样统当露输刘延个地审视每一个人供,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知林极倒对接政优行劳道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

世界上最难的数提学题是什么

2、黎曼假设。

入船模晶击上座有些数具有不能表示为两个白铁坐通纪指外晶告更小的数的乘积的边食殖娘办并兵助特殊性质,例如,2、3袁月冲己沿区改战很、5、....等等。这样的数称为素数;它们促部乱把在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学衡厚盟拿看难请因家黎曼(1826~1为息掉航连866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ()=0的所有有意义的解都在一条直线来上。这点已经对于开袁左青始的1,500,000,000个解验证过。证明它对于每-一个有妒铁木用升胶进饭设意义的解都成立将为候脸围绕素数分布的许多奥秘带来光明。

世界上最难的数提学题是什么

3、BSD猜想。

数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0,那么只存在着有限多个这样的点。

世界上最难的数提学题是什么

上一篇 洛克王国超级帕尔萨斯怎么得 在哪抓
下一篇 石家庄柯棣华医学学校怎么样
扫一扫,手机访问

扫一扫,手机浏览