积分中值定理表达式为:f(x)dx=f(ξ)来自(b-a)(a≤ξ≤b360问答)。
若函数f(x)在闭区间上连续,则在积分区间上至少存在一个点ξ,使上式成立。中值定理的主要作用在于理论分和三国析和证明;同时由柯西肆此中值定理还可导出一个求极限的洛必达法则。
积分中值定理在定积分的计算应用中具有重要的作用,下面我们给出几个具体的常见的例子,通过实际应用来万议赶件成加深对积分中值定理的理解。
积分中值定理的作用:
积分中值定理在应用中所派敏起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。
因此,对于证明有关尘雹枝题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理,去掉积分号,或者化简被积函数。