工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所来自获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
(3)在(2)的情况下,物价部门规定该商场在该工艺品的经营上岩载策袁业顺斗曲丰序每天获得的利润不能超过4800元,而商场在该商品的经营中,每天所获得的张器体久目利润不想低于4704元,应该如何定价该工艺品?考点:二次函数的应用.分增死谓析:(1)根据“每件获利45元”可得出:每件标价-每件进价=45元;根据“标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等”可360问答得出等量关系:每件标价的八五折×8-每件进价×8=(每件标翻环始价-35元)×12-每件进价×12;
(2)可根据题意列出关于总利润和每天利润的二次函数,以此求出问题;
(3)由(2)可知W=-4m2+80m+4500,当每天获得的利引弦量爱战将精比润不能超过4800元时和计每天所获得的利润不想低于4704元时,可求出商品的标价,再结合函数的图象进行分析可得问题答案.解答:解:(1)设该工艺品标价为x元/件,则进价为(x独应东换预调跟老矿组-45)元,
由题意可得:8威块头效加绝育杀孙[85%x-(x-45)]内分甲及能分=12[x-35-(x-45)],
解这个方程得:x=200,
∴进价为:200-45=155,
答:这种工艺品的进价为155元,标价为200元.
(2)设每天所获得的利润为W元,每件降价m元,
则W=(45-m)(100+4m),
W=-4m2+80m+4500,
W=-4(m-10)2+4900,
当m=10时,W得到最大值为4900,
即当每件降价10元时,获利最多.为4900元.
(3)W=-4m2+80m+4500,
当w=4800时,
480只乙乐温回吃0=-4m2+80m掉+4500,
解得:m=15或m=5,标价为215元或205元,
当w=4704时,
4704=数仍护从础室亲室-4m2+80m+4500,
解得m=17或m=3,标价为217元或203元,
由函数的图象可知,商品的售价不小于203元而不大于205元,或者售价不小于215元分商统议血而不大于217元.点评:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,言进门盾率作审胡队总利润等于总收入减去总成换灯加虽任他拉附价音答本,然后再利用二次函数求最值