解:\(∵\)一次函数\(y=- \dfrac {2}{3}x+2\)中,令\(x=0\)得:\(y=2\); 令\(y=0\),解得\(x=3.\)\(∴B\)的坐标是\((0,2)\),\(A\)的坐标是\((3,0).\)作\(CD⊥x\)轴于点\(D\).
\(∵∠BAC=90^{\circ}\), \(∴∠OAB+∠CAD=90^{\circ}\), 又\(∵∠CAD+∠ACD=90^{\circ}\), \(∴∠ACD=∠BAO\)又\(∵AB=AC\),\(∠BOA=∠CDA=90^{\circ}\)\(∴\triangle ABO\)≌\(\triangle CAD\), \(∴AD=OB=2\),\(CD=OA=3\),\(OD=OA+AD=5\).
则\(C\)的坐标是\((5,3).\)设\(BC\)的解析式是\(y=kx+b\), 根据题意得:\( \begin{cases} \overset{b=2}{5k+b=3}\end{cases}\), 解得\( \begin{cases} k= \dfrac {1}{5} \\ b=2\end{cases}\). 则\(BC\)的解析式是:\(y= \dfrac {1}{5}x+2\).