等离子态又叫做物质的第四态,它是气体,不过其原子失去电子形成自由电子和
正离子,因为两者的量相等因此又叫做等离子态,它可导电而且受磁场影响,热气体中,因为原子高速碰撞而造成电离现象,形成等离子态,太阳内部的气体就是其中一个例子.低温气体,负电子和正离子会再结合,因此不会形成等离子态.列料在萤光灯内,存在低压汞蒸汽及一些惰性气体,在高电压下,电子急剧加速,碰撞而造成更多电子及正离子,形成等离子态,过程中汞原子被激发至激发态,由激发态跃至基态,发出电磁波,主要为紫外辐射,紫外辐射投射到管壁的荧光粉时,来自再转为可见光.
为了克服氢核间的强劲排斥力而进行核熔合作用,两氢核必须高速碰撞,而所需温度高达题析等路洲守同后千万度摄氏,太阳内?依kao)筛胶洗颂跫?但如要发展受「控制的热核熔合」作用,没有容器可忍受此高温而不熔解,利用磁场将等离子体困在磁场内,使它在高温下进增初根古判行核熔合,这方法仍未成功,仍有待进一步研究.
终裂制演酒永参直我们知道,把冰加热到一定程度,它就会变成液态的水,如果继续升高温度,液态的水就会360问答变成气态,如果继续升高温度到几千度以上,气投突量既全印体的原子就会抛掉身上的电子,发生气体的电离化现象,物理学家把电离化的气体就叫做等离子态。
在茫茫无际的宇宙空间里,等离子态是一种普遍存在的状态。宇宙它门纸误华执样适中大部分发光的星球内部温度和压力都很高,这些星球内部的物质差不多都处于等离子态。只有那些昏暗的行星和分散的星际物质里才可以找到固态、液态和气态的物质。
就在我们周围,也流经常看到等离子态的物质。在日光灯和霓虹灯的灯管里,在眩目的白炽电弧里,都能找到它的踪迹。另外,在地球周围的电离层里,在美丽的极光、大气中的闪光放电和流星的尾巴里,也能找到奇妙的等离今尽商且金境子态。
除了等离子态外,科学家还发现了“超固态”和“中子态”。宇宙中存在一颗白矮星,它的密度很大,大约是水的3600万到几亿倍。一立方厘米白矮星上的物质就有100~200公斤重,这高黑格较伟加兰序是怎么回事呢?
原来,普通物越雨推均间音束棉质内部的原子与原子之间有很大的空隙,但是在白矮星里面,压力和温度都很大,在几百万个大气压的压力下,不但原子之间的空隙被压缩了,就是原子外围的电子层也被压缩了。所有的原子核和原子都紧紧地挤在一起,物质里面不再有什么空隙密这,因此物质就特别重,这样的物质就是超固图国态。科学家推测,不但容越报白矮星内部充满了超固态物质,在地球中心一定也存在着超固态物质。
假如在超固态物质上再加上巨大的压力,原子核只好被迫解散,从里面放出质子和中子。放出的质子在极大的压力下会跟电子结合成中子。这样一来,物质的结构就发生了根本性的改变,原来是原子核和电子,现在都变成了中子。这样的状态就叫做“中子态”。
中子态物质的密度大得更是吓人,它比超固态物质还要大10多万倍。一个火柴盒那么大的中子态物质,就有30亿吨重,要用96000台重型火车头才能拉动它。
血据逐属井了守散命宏观物质在一定的压力下随温度升高由固态变成液态,再变为气态(有的直接变成气态)。当温度继续升高,气态分子热运动加剧。当温度足够高时,分子中的原子简时们核重犯愿劳被含界由于获得了足够大的动能,便开始彼此分离。分子受热时分裂成原子状态的过程称为离解。若进一步提高温度,原子的外层电子会摆脱原子核的束缚成为自由电子。失去电子的原子变成带电的离子,这个过程称电离。发生电离(无论是部分电离还是完全电离)的正很气体称之为等离子安审议不吃异穿体(或等离子态)。等离子体是由带正、负电荷的粒子组成的气体。由于正负电荷总数相等,故等离子体的净电荷等于零。
等离子态与固、液、气三态相比无论在组成上还是在性质上均有本质区别。首先,气体通常是不导电的,等离子体则是一种导电流体。其次,组成粒子间的作用力不同。气体分子间不存在净的电磁力,而等离子中的带电粒子间存在库仑力,并由此导致带电粒子群的种种特有的集体运动。另外,作为一个带电粒子系,等离子体的运动行为明显的受到电磁场的影响和约束。
根据离子温度与电子温度是否达到热平衡,可把等离子体分为平衡等离子体和非平衡等离子体。在平衡等离子体中,各种粒子的温度几乎相等。在非平衡等离子体中电子温度与离子温度相差很大。
通常把电离度小于0.1%的气体称弱电离气体,也称低温等离子体。电离度大于0.1%的称为强电离等离子体,也称高温等离子体。
等离子体在工业上的应用具有十分广阔的前景。高温等离子体的重要应用是受控核聚变。低温等离子体用于切割、焊接和喷涂以及制造各种新型的电光源与显示器等。
等离子体在自然界中是普遍存在的。例如,太阳、恒星、银河系、河外星系中的大部分星际物质都处于等离子体状态。地球上南北极有时发生的五颜六色的极光、夏日雷雨时出现的闪电和绚丽多彩的霓虹灯、日光灯等都与等离子体现象密切有关。