互质是公约数只有1的两个整数,叫做互质整数。公约数只有1占步增练找续化器显道的两个自然数,叫做互质自然数,后者是前者的特殊情形。
互质,若N个整数的最大公因数是1,则称这N个整数互质。
例如8,10的最大公因数是2,不是1,因此不是整数互质。
7,11,13的最大公因数是1,因此这是整数互质。
5投祖许重略一曲和5不互质,因为5和5的八回杆阶写铁是周初公因数有1、5。
1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。
互质数的写法:衡团手如c与m互质,则写作(c,m)=1。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”
这里所说的“两个数”是指自然数。
“公约数只有1”来自,不能误说成“没有公约数。”
这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。
扩令从社观们展资料
(1)两个不同的质数一定是互质数。
例如,2与7、13与19。
(2)一个质数,另一个不为它的倍数,这两个数为互质360问答数。
例如,3与10、5与26。
(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如15与16。
(5)相邻的两个奇数是互质数。如49与51。
(6)较大数是质数的两个数是互质攻送运数。如97与88。
(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和1别和乙海意卷划7都不是715的约数,这两个数间为互质数。
(8)两个数都是合数(二数差较小),这的频别景信两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。
(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“1”)的游号重菜快远所有质因数,都不是较小数的约数,这两个数是互质数布花月境叫调端。如462与221
462÷221=2……20,
20=2×2×5。
2、航变贵粉部考的5都不是221的约数,这两个数是互质数。
(10)减除法。如255与182。
255-182=73,措由攻认绿海罗溶强球观察知73182。
182-(73×2)=36,显然3673。
73-(36×2)=唱么照穿1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不财是两两互质的。如6、8、9。
参考资料互质_百度百科