您的位置 首页 百科知识

一元三次方程高中解法

一元三次方程高中解法

如果一元三次方程为ax^3+bx^2+cx+d=0360问答(a≠0)的三个根分别是x1若,x2,x3,

那么有ax^3+bx^2+cx+d=a(x-x1)(x呼率错要-x2)(x-x3),

将等式左边展开整理:

ax^3+bx^2+cx+d=ax^3-a(x1+x2+x3)x价^2+a(x1x全宽2+x2x3+x1x3)x-ax1x2x3。

根据一个等式,等能殖厚唱阶境频号两边的系数相等,有

-a(x1+x2+x金妒审杂吧料期纸3)=b,a(x1x2+x2x3+x1x3)=c,ax1x2x3=d,

所以得到一元三次方程根和系数的关系为

x1+x2+x3=-b/a,x1x2+x2x3+x1x3=c/a,x1x2x3=-d/a。

一元三次方程根的判断

将ax^3+bx^2+cx绍棉石识+d=(a≠0)转化成y^3学看亲结命创实光掉推好+py+q=0的形式,这里可二类居读事了帮找向必食令x=y-b/3a代入方程中整理后,再根据系数对应相等设p=1/a(c-b^2/3a),q=1/a(2b^3/27a^2-bc/3a+d)可得到y^3+py+q=0,这部只为消去设房次高项。

这样一元三次方程就可以根据卡尔丹判别法来判断根的情况。

令△=(q/2)^2+(p/3)^3则:

当△>0时,方程有一个实根,一终团破发意对共轭复根,如z±ai就是一京对共轭复数;

当△=0时,方程有三个实根,其中有一个二重根,如(x-1)^2=0,x=1就是二重根;

当△<0时,方程有三个儿贵对目不相等的实根。

上一篇 折页的设计
下一篇 荷兰语 翻译一下
扫一扫,手机访问

扫一扫,手机浏览