[解答]证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD
∴∠DAC=∠ACH
∴AD∥CH,且AD=CH
∴四边形ADCH是平行四边形
(2)①∵AB是直径
∴∠ACB=90°=∠ADB,且AC=BC
∴∠CAB=∠ABC=45°,
∴∠CDB=∠CAB=45°
∵AD∥CH
∴∠ADH=∠CHD=90°,且∠CDB=45°
∴∠CDB=∠DCH=45°
∴CH=DH,且∠CHD=90°
∴△DHC为等腰直角三角形;
②∵四边形ABCD是⊙O的圆内接四边形,
∴∠ADP=∠PBC,且∠P=∠P
∴△ADP∽△CBP
∴,且PB=PD,
∴,且PB=PD,
∴,AD=CH,
∴
∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°
∴△CHD∽△ACB
∴
∴AB=CD
∴AB=CD
∵AB+CD=2(+1)
∵AB+CD=2(+1)
∴CD+CD=2(+1)
∴CD+CD=2(+1)
∴CD+CD=2(+1)
∴CD=2,且△DHC为等腰直角三角形
∴CH=