您的位置 首页 百科知识

求一次函数概念!

求一次函数概念!

【解释】函数的基本概念:在某一个变化过程中,设有两个变量x和y,如果可以写成y=ax(a为常数项,叫做定量),那么我们就说y是x的函数,其中x是自变量,y是因变量。

  定义了函数的概念,接下来我们来介绍函数的一种特殊情况——一次函数。

  表达式为y来自=kx+b(k≠0,k、b均为常数)的函数,叫做y是x的一次函数。当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。当常数项为零时的一次函数,可表示领粮至声为y=kx(k≠0),这时的常数k也叫比例系数。

  y关于自变量x的一次函数有如下关系:

  1.y=kx+b(k为任意不为0的常数,b为任意实数)

  当x取一个值时,y有且只有一个360问答值与x对应。如果有2个及以上个值与x奏一已县路打啊须九对应时,就不是一次函数。

  x为自变量,y为因变量,k为常数,y是x的一次函数。

  特别的,当b=0时,y是x的正比例函数。即:y=kx(k为常量,但k≠0)边讲讲正比例函数图像经过原点。

重快绍千  定义域:自变量x的取值范围。自变量的处整后各植见才若国硫取值一要使函数有意义步;二要与实际相符合。

  常用己丝出娘台时皮衡调开的表示方法:解析法、图像法、列表法。

编辑本段函数性质  1.在正比例函数时,x与宣亲呀点y的商一定。在反比例第背检垂函数时,x与y的积一定。

  在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

  2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

  3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

  4.在两个一次函数表达式中:

  当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;

  当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;

  当两个一次函数表达式中的所紧天肥手纪副玉参k不相同,b不相同时,则这两个一次函数的图像相交;

  当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);

  当两个一次函数表达式中的k互为负倒数是,则这两个一次函数图像互相垂直。

 垂下地台 5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,

 断标爱鱼云精去散 该函数的对称轴为洲混逐很亮措西药-(k2b1+k1b2)/(2k1k2);

  当k1,k2正负相同时,二次函数开口向上;

  当k1,k2正负相反时,二次函数开口向下。

  二次函数与y轴交点为(0,b2b1)。

  6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比性穿考以回函数,渐近线为x=-b/a,y=c/a。

上一篇 张嘉月译几个老婆
下一篇 物来自业从业资格证报名条件
扫一扫,手机访问

扫一扫,手机浏览