您的位置 首页 百科知识

小学三年级厚简率或多业取场院吃若奥数题

问题补充说明:我要三年级的奥数题(40道)急!!!

小学三年级厚简率或多业取场院吃若奥数题

小学三年级奥数:盈亏巴异甲怎移似问题

  三年级的老师给小朋360问答友分糖果,如果每位同学分4颗外扩温句云粮知,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖?

  解答:(3+2)÷(5-4)=5÷1=5(位)…人数

  4×5+3=20+3=23(颗)……糖

  或5×5-2=25-2=23(颗)

  【小结】盈亏问题公式

  (1)一次有余(盈),一次不够(亏),可用公式:

  (2)(盈+亏)÷(两次每人分配数的差我践农聚洋天希在带失)=人数。

小学三年级奥数:投尔路早容变微讲几战票

  三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到1试婷模易说封6票,丙得到11票。如果得票比右映季司助其它两人都多的候选人将帮针之居条知换音么唱成为班长,那么甲最备少再得到多少票就能够保证当选?

  解答:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-4甚重么他4=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投创蛋序巴出色投湖给丙的,那么甲就必须得到宗降几4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。

小学三年级奥数:黑企家初树候二工扩指布倒白棋子

  有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

  解答:

  只有1枚白子的共27堆,说明了在分成3枚一份中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有三枚黑子的有42-27=15堆;所以三枚白子的是15堆:还剩一黑二白的是100-27-15-15=43堆:

  白子共有:43×2+15×3=158(枚)。

水彩笔和铅笔(奥数精选习题)

代坐血妈抓来源:奥数网文章作者:奥数网整理2010-05-1715:27:41

标签:数的整除

  笔

  商店有水彩笔和铅笔一共163支,如果水彩笔拿走19支后,水彩笔的矛容价养岁球防灯困因出支数就正好是铅笔的5倍.原有水彩笔和铅笔各多少支?

  弦继和经解答:原有水彩笔139支,铅笔24支。

  分析:水彩笔拿走19支后,正好是铅笔数量的5倍.此时水彩笔和铅笔的总数也应减少19支,列式成163-19=钱重外关与印心怀色饭指144(支),且正好是铅笔支数的1+5=6倍.铅笔有:144÷6=24(支),水彩笔有:24×5+19=139(支).

  植树问题

  一块长方形地,长为60米,宽为30米,要在四边上植树,株距6米,四个角上各有一棵,共植树多少棵?

  解答:共植树30棵。

  分析:长方形的周长为:(60+30)×2=180(米),株距为6米,封闭图形,根据公式,共植树180÷6=3(棵).

  平均数问题

  南南、北北两个人的平均年龄是11岁,东东、南南两个人的平均年龄是15岁,那么北北比东东小几岁?

  解答:北北比东东小8岁。

  分析:南南、北北的年龄和是:11×2=22(岁),东东、南南的年龄和是:15×2=30(岁),所以北北、东东的年龄差为:33-22=8(岁).

  最值的差

  由0、2、5、7、9写成的没有重复数字的四位数中,能被5整除的最大数与最小数的差是多少?

  解答:差为7675.

  分析:能被5整除的最大四位数是9750,能被5整除的最小四位数是2075,则差是7675.

  能被5整除的数的个位数为0或5。组成一个新的数时,高位上的数越大,则该数越大,反之亦然。

剑法中的巧算(奥数精选习题)

来源:奥数网文章作者:奥数网整理2010-05-1715:19:55

标签:奥数/奥数习题

  第一题:巧算下面各题

  ①36+87+64②99+136+101③1361+972+639+28

  解答:①式=(36+64)+87

  =100+87=187

  ②式=(99+101)+136

  =200+136=336

  ③式=(1361+639)+(972+28)

  =2000+1000=3000

  第二题:拆数补数

  ①188+873②548+996③9898+203

  解答:①式=(188+12)+(873-12)(熟练之后,此步可略)

  =200+861=1061

  ②式=(548-4)+(996+4)

  =544+1000=1544

  ③式=(9898+102)+(203-102)

  =10000+101=10101

  第三题:剑法中的巧算

  ①300-73-27②1000-90-80-20-10

  解答:①式=300-(73+27)

  =300-100=200

  ②式=1000-(90+80+20+10)

  =1000-200=800

  第四题:巧算

  ①4723-(723+189)②2356-159-256

  解答:①式=4723-723-189

  =4000-189=3811

  ②式=2356-256-159

  =2100-159

  =1941

  第五题:巧算

  ①506-397②323-189

  ③467+997④987-178-222-390

  解答:

  ①式=500+6-400+3(把多减的3再加上)=109

  ②式=323-200+11(把多减的11再加上)

  =123+11=134

  ③式=467+1000-3(把多加的3再减去)

  =1464

  ④式=987-(178+222)-390=987-400-400+10=197

晶晶的围棋方阵(奥数精选习题)

来源:奥数网文章作者:奥数网整理2010-05-1715:13:44

标签:围棋/奥数/奥数习题

  1、晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?

  分析:方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。

  解:最外边一层棋子个数:(14-1)×4=52(个)

  第二层棋子个数:(14-2-1)×4=44(个)

  第三层棋子个数:(14-2×2-1)×4=36(个).

  摆这个方阵共用棋子:

  52+44+36=132(个)

  还可以这样想:

  中空方阵总个数=(每边个数一层数)×层数×4进行计算。

  解:(14-3)×3×4=132(个)

  答:摆这个方阵共需132个围棋子。

  2、用个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?

  解:分析求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。

  解:(4+5+7+8)÷4=6(厘米)

  答:这4个杯子水面平均高度是6厘米。

  3、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

  

  分析:上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知"甲班的图书比乙班多80本",即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。

  解:①乙班的本数:80÷(3-1)=40(本)

  ②甲班的本数:40×3=120(本)

  或40+80=120(本)。

  验算:120-40=80(本)

  120÷40=3(倍)

  答:甲班有图书120本,乙班有图书40本。

  4、某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?

  分析:要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它可以是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。

  解:本题的答案是

  888+88+8+8+8=1000

  5、在下面算式合适的地方添上+、-、×号,使等式成立。

  3333333333333333=1992

  分析:本题等号左边数字比较多,右边得数比较大,仍考虑凑数法,由于数字比较多,在凑数时,应多用去一些数,注意到333×3=999,所以333×3+333×3=1998,它比1992大6,所以只要用剩下的八个3凑出6就可以了,事实了,3+3+3-3+3-3+3-3=6,由于要减去6,则可以这样添:333×3+333×3-3-3+3-3+3-3+3-3=1992。

  解:本题的一个答案是:

  333×3+333×3-3-3+3-3+3-3+3-3=1992。

三年级奥数应用题解题技巧

来源:奥数网整理文章作者:——2010-03-2515:10:00

标签:应用题/三年级

  【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?

  【解析】

  (1)12次搬了多少本?

  15×12=180(本)

  搬了的与没搬的正好相等

  (2)要几次才能把剩下的搬完?

  180÷20=9(次)

试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

  【解析】

  (1)小英每分拍多少次?

  25-5=20(次)

  (2)小英5分拍多少次?

  20×5=100(次)

  (3)小华要几分拍100次?

  100÷25=4(分)

  答:小英5分拍100次,小华要拍同样多次要用4分。

【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

  补充1:“照这样计算,9个同学可以擦多少块玻璃?”

  【详解】

  (1)每个同学可以擦几块玻璃?

  12÷3=4(块)

  (2)9个同学可以擦多少块?

  4×9=36(块)

  答:9个同学可以擦36块。

  补充2:“照这样计算,要擦40块玻璃,需要几个同学?”

  【详解】

  (1)每个同学可以擦几块玻璃?

  12÷3=4(块)

  (2)擦40块需要几个同学?

  40÷4=10(个)

  答:擦40块玻璃需要10个同学。

【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

  【详解】

  方法1:

  (1)两个车间一天共装配多少台?

  35+37=72(台)

  (2)15天共可以装配多少台?

  72×15=1080(台)

  方法2:

  (1)第一车间15天装配多少台?

  35×15=525(台)

  (2)第二车间15天装配多少台?

  37×15=555(台)

  (3)两个车间一共可以装配多少台?

  555+525=1080(台)

  答:15天两个车间一共可以装配1080台。

【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

  【详解】

  方法1:

  (1)每本书多少毫米?

  42÷7=6(毫米)

  (2)28本书高多少毫米?

  6×28=168(毫米)

  方法2:

  (1)28本书是7本书的多少倍?

  28÷7=4

  (2)28本书高多少毫米?

  42×4=168(毫米)

试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

  【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

  (1)这堆煤一共有多少千克?

  1500×6=9000(千克)

  (2)可以烧多少天?

  9000÷1000=9(天)

  (3)可以多烧多少天?

  9-6=3(天)。

【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

  【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

  (1)每小时耕地多少公顷?

  40÷5=8(公顷)

  (2)需要多少小时?

  72÷8=9(小时)

  答:耕72公顷地需要9小时。

【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树()棵。

  【详解】此题植树线路是封闭的,这类题的特点是:因为头尾两端重合在一起,所以棵数等于分成的段数。题中要求三角形三个顶点上要各栽一棵树,因此我们要按照三条边来考虑。因为156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每边恰好分成了整数段,这样,从周长来讲,应栽树的棵数与段数相等。即共植树:26+31+39=96(棵)。

【试题】巧算与速算:41×49=()

  【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用“头同尾合十”的巧算法进行简便计算。

  “头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。

  41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。

1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

  分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

  解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

  2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

  分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

  解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

 1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?

  分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。

  解:△+○+□=10+15+20=45。

  2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?

  分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。差倍问题。

  解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。

  3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?

  分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。

  解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。

1、甲、乙、丙共有100本课外书。甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数都是1。那么乙有书多少本?

  分析:甲的本数除以乙的本数,商5余1,说明甲是乙的5倍多1,丙的本数除以甲的本数,商5余1,说明丙是甲的5倍多1,是乙的25倍多6(5+1),因此,这是一个和倍问题。

  解:乙的本数=(100-1-6)/(1+5+25)=3本。

  2、小明、小红、小玲共有73块糖。如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍。问小红有多少块糖?

  分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2*2+2)。

  因此,这是一个和倍问题。

  解:小红的颗数=(73-3+6)/(1+1+2)=19块。

  3、有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2。问每堆各存放多少件?

  分析:第一堆件数的2倍等于第二堆件数的一半,第二堆是第一堆的4倍;比第三堆的件数少2,第三堆是第一堆的2倍多2;比第四堆的件数多2,第四队是第一堆的2倍少2;和倍问题。

  解:第一堆的件数=(108-2+2)/(1+4+2+2)=12件,第二堆的件数=12*4=48件,第三堆的件数=2*12+2=26件,第四堆的件数=2*12-2=22件。

1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

  分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

  解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

  2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

  分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

  解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

  3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

  分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。

  解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。

三年级乘除法中的速算(一)

来源:奥数网整理文章作者:——2010-03-2513:57:24

标签:三年级/小数除法/分数除法

小学三年级奥数题:乘除法中的速算

三年级乘除法中的速算(二)

来源:奥数网整理文章作者:——2010-03-2513:58:29

标签:三年级/小数除法/分数除法

小学三年级奥数题:乘除法中的速算(二)

上一篇 什么是单项式
下一篇 蓝绝的介绍
扫一扫,手机访问

扫一扫,手机浏览