ta婷家轮品早论n30°=√3/3;tan45°=1;tan60°=√3;tan90°不存在。
sin30°=0.5;sin45°=√2/2;sin60°=√3/查药织2;sin90°式方侵饭牛原卷热脚=1;
cos30°=√3/草胡袁2;cos45°=√2/2;cos60°=0.5;cos90°=0;
其他一些特殊角的三角函数值如下表所示:
三角函数是基本初等函数之息溶硫每营足一,是以角度(数学吗上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
扩展资料:
三角函数记忆口诀:
三祖话检当测角函数是函数,象限符号停北侵乙用副助衡坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦滑切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面育远奏两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化核印普织究民积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指伟开另导,升幂降次和差积。条件等式的证明,方程思识关济标断大想指路明。
万能公式造始停画不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函失袁打城关学帝数反函数,实质就是求角度,先求三角函数值,再判概变模换角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
么赵种化假承史曾卫子管定义域和值域:
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c的值域为[c-√(a²;+b²;),c+√(a²;+b²;)]周期T=2π/ω。
三角函数的反函数:
三角函数的反函数,是多值函数。它们是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2 反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x). 反三角函数主要是三个: y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条; y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条; y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条; sinarcsin(x)=x,定义域[-1,1],值域[-π/2,π/2] 证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。 其他几个用类似方法可得。 参考资料: 百度百科-三角函数