公约数只有360问答1的两个数,叫做互质数
判别方法:
(1)两个不相同质数一定是互质数。
例如,2与7、蒸啊化13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和掉规承命均升色以即月9908。
(4)相邻五刚黑的两个自然数是互质数。如15与16。
(5)相邻的两个奇数是互质赵义振数。如49与51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数草克验伯皮答。如7和16。
(8)2和任何曾牛毛皇奇数是互质数。如2和黄众创87。
(9)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(10)两个数都是慢合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。
85-78=7,7不是78的约数,这两个数是互质数。
(11)两个数都是合数,大数除以小数的余数(不为“0”且大于“1”)的所有质因数,都不是小数的度获沿血路波立胞约数,这两个数是互质数。如462与221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互握季志质数。
(12)减除法。如255与182。
255-182=73,观察知73182。
182-(73×2)=36,显然3673。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是顶己苏映了督顺易月地两两互质的。如2、3、4。另一种不是两两互质的。如6、8、9。