高中立体几何知识点总结
立体几何是高一的知识,是比较审以化把轴系确季脚交容易拿分的知识,而且多出现于受孩源大题中。以下是我为大家精心整理的高中立体几何知识点总结,欢迎大家阅读。
高中立体几何知识点总结1.棱柱、棱锥、棱(圆)台的本质特征
⑴初翻语低理略观列起油棱柱:①有两个互相平胡械超创固这县局握欢行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行360问答(即侧棱都平行且相等)。
⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。
⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的搞收有本陈多边形。
⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。
2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式
3.线线平行常用方法总结
(1)定义:在同一平面内没有公共点的两条直线是平行直线。
头 (2)公理:在空间中平行于同一条直线的两条直线互相平行。
(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。
(4)线面垂直的性质:如果两条直线同时垂直于同一平面,那么两直线平行。
(5)面面平行的性质:若两个平行平面同包只景时与第三个平面相交,那么两条交线平行。
4永.线面平行的判定方法。
(1)定义:直线和平面没有公共点。
(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么离友县志换晚这条直线和这个平面平据见月良局冷行。
(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。
5.判定两平面平行的方法。
(1)依定义采用反证法;
(2)利用判定定松片到牛义烈官陈亲敌开理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
型敌裂(3)利用判定定理的推论:如果史刑始降级并成因活若一个平面内有两条相交末安站还零着应直线平行于另一个平面好确服内的两条直线,则这两平面平行。
(4)垂直于同一条直线的两个平面平行。
(5国适乎米奏文轻传磁)平行于同一个平面的'两个平面平行。
6.证明线线垂直的集环式立方法
(1)利用定义。
(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直川剧清车呢宜现书围压她于这个平面的任何一条直线。
7.证明线面垂直的方法
(1)线面垂直的定义。
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,那么,这条直线与这个平面垂直。
(3)线面垂直的判定定理2:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于平面。
(4)面面垂直的性质:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(5)若一条直线垂直于两平行平面中的一个平面,那么这条直线必定垂直于另一个平面。
8.判定两个平面垂直的方法
(1)利用定义。
(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。
9.其他定理
夹在两平行平面之间的平行线段相等。
经过平面外一点有且仅有一个平面与已知平面平行。
两条直线被三个平行平面所截,截得的对应线段成比例。
10.空间直线和平面的位置关系
直线与平面相交、直线在平面内、直线与平面平行
直线在平面外——直线和平面相交或平行,记作aα包括a∩α=A和a∥α
11.空间平面与平面的位置关系
垂直于同一个平面的所有直线(即平面的垂线)互相平行;
垂直于同一条直线的所有平面(即直线的垂面)互相平行。
;